ca doit cetainement etre simple mais je bloque sur cette équation :

montrer que pour tout entier naturel n:

(2n+1)²+(2n²+2n)² = (2n²+2n+1)²

en fait il suffit de commencer par un membre de l'équation et en calculant on arrive au deuxieme. mais je ne sais pas avec le quel commencer je suis bloqué !!

1

Réponses

2012-09-05T22:45:58+02:00

bonsoir

 

l'astuce consiste à faire apparaitre une identité remarquable

de la forme A² - B² = (A+B)(A-B)

 

(2n+1)²+(2n²+2n)² = (2n²+2n+1)² <=>

(2n²+2n+1)² - (2n²+2n)²  = (2n+1)²

 

on factorise

(2n²+2n+1)² - (2n²+2n)² ---- forme A² - B²

 = ....

 

tu dois arriver, après réduction, à : 4n² + 4n + 1 --- et ça, c'est (2n+1)² !