Bonsoir à tous, j'ai un Dm dont j'ai fait la première partie mais je bloque après.

Partie 1

Soit f la fonction définie et dérivable sur R par f(x)=4/(e^{x}+1)

On note C la courbe représentative dans un repère orthonormé d'origine O.

Pour tout réel x positif ou nul, on note: M le point de C de coordonnées(x,f(x)), P le point de coordonnées (x;0) et Q le point de coordonnées (0;f(x))

Partie 2

A. Soit g(x)=e^{x}-xe^{x}+1

1) Etudier les variations de la fonction g

2)a) Resoudre dans R l'inéquation g(x)>1

b) Montrer que l'équation g(x)=0 admet dans [1;2] une seule solution \alpha. Déterminer un encadrement d'amplitude 10^{-2} de \alpha

c)Justifier, en vous aidant des deux questions précédentes, que l'équation g(x)=0 admet une seule solution dans R

d) Demontrer que e^{\alpha}=1/(\alpha-1)

e) Determiner le signe de g(x)

B. Soit A la fonction définie et dérivable sur R par A(x) = 4x/((e^{x}+1)

Démontrer que pour tout x réel, A'(x) a le même signe que g(x)

En déduire les variations de la fonction A

C.1.Montrer que l'aire du rectangle OPMQ (partie 1) est maximale lorsque M a pour absciss \alpha. Déterminer un encadrement de cette aire maximale.

2.Pour cette question, toute trace de recherche sera prise en compte dans l'évaluation. Supposons alors que M a pour abscisse \alpha. La tangente T en M à la courbe C est-elle parallèle à la droite (PQ) ?

Voilà je vous remerci beaucoup par avance :)

1

Réponses

  • Utilisateur Brainly
2012-11-26T11:51:29+01:00

g' vaut -xe^x donc est du signe de -x : g croit de 1 (sa limite en -infini) à 2 (g(0) puis décroit vers -infini

g(x)>1 donne e^x(1-x)>0 soit 1-x>0 soit x<1

 

g(1) vaut 1 et g(2) vaut 1-e² <0 g monotone sur [1,2] donc d'après le TVI une racine de g(x)=0 existe entre 1 et 2

environ 1.278 (Geogebra) 1.27<alpha<1.28

on a ee^\alpha-\alpha*e^\alpha+1=0 donc e^\alpha(1-\alpha)=-1

d'où e^\alpha=1/(1-\alpha) CQFD

 

g(x) est donc positif pour x<\alpha et <0 pour x>\alpha

 

en calculant A' on treouve que A'(x)=4*g(x)/(e^x+1)² donc A' a bien le mêm signe que g(x)

 

l'aire de OPMQ est x*f(x) soit A(x)

elle est donc maximale en  \alpha

et A(\alpha)=4\alpha/(e^\alpha + 1)

or e^\alpha=1/(\alpha-1) donc (e^\alpha + 1) vaut \alpha/(\alpha-1) et A(\alpha)=4/\alpha

soit entre  3.125 et 3.149

 

Tangente en M a priori // à PQ (Geogebra, à vérifier par le calcul algébrique)