(O,I,J) est un repère orthonormé du plan. Soit les points A ( -5;-1 ) B (4;-1) et M ( x;2 ). Determiner dans chacun des cas suivants la ou les valeurs de x telles que M vérifie : a : Le triangle ABM est isocèle en M, b : le triangle ABM est rectangle en A, c : le triangle ABM est rectangle en B

1

Réponses

2012-11-03T14:47:45+01:00

Pour que le triangle ABM soit isocèle en M il faut que les distance AM et BM soit identiques, donc on les calcule :

AM=\sqrt{(xm-xa)^{2}+(ym-ya)^{2}}

BM=\sqrt{(xm-xb)^{2}+(ym-yb)^{2}}

Tu remplace :

AM=\sqrt{(x+5)^{2}+(2+1)^{2}}

BM=\sqrt{(x-4)^{2}+(2+1)^{2}}

On cherche x pour que AM = BM on a l'equation :

\sqrt{(x+5)^{2}+(2+1)^{2}}=\sqrt{(x-4)^{2}+(2+1)^{2}}

(x+5)^{2}+(2+1)^{2}=(x-4)^{2}+(2+1)^{2}

Ensuite je te laisse chercher les valeurs de x à partir de là

 

C'est beaucoup trop calculatoir pour que je te le fasse a l'ordi alors je te laisse faire, je suis sûr que t'y arrivera ;)

 

Pour que le triangle soit rectangle en A, tu utilise le même principe de distance sauf que cette fois tu utilise le théorème de pythagore

AM²+AB²= BM²

 

Pour que le triangle soit rectangle en B, tu utilise le même principe de distance

BM²+BA²= AM²