Réponses

2014-01-06T21:26:12+01:00
Donc tu sais que sin A = 0.25
donc tu va chercher l'angle A , pour cela tu fais Arcsin 0.25 = 14.47 degrés = angle A
ensuite il ne te reste plus qu'a faire 
Cos A = Cos 14.47 = 0.968
et Tan A = Tan 14.47 = 0.258

2014-01-07T00:13:12+01:00
Bonsoir,

Puisque l'angle A est aigu, sin(A) > 0 ; cos(A) > 0 , tan(A) > 0.

sin(\widehat{A})=\dfrac{1}{4}\\\\sin^2(\widehat{A})+cos^2(\widehat{A})=1\\\\(\dfrac{1}{4})^2+cos^2(\widehat{A})=1\\\\\dfrac{1}{16}+cos^2(\widehat{A})=1\\\\

cos^2(\widehat{A})=1-\dfrac{1}{16}\\\\cos^2(\widehat{A})=\dfrac{15}{16}\\\\cos(\widehat{A})=\sqrt{\dfrac{15}{16}}\\\\cos(\widehat{A})=\dfrac{\sqrt{15}}{4}

*****************************************

tan(\widehat{A})=\dfrac{sin(\widehat{A})}{cos(\widehat{A})}\\\\tan(\widehat{A})=\dfrac{\dfrac{1}{4}}{\dfrac{\sqrt{15}}{4}}\\\\tan(\widehat{A})=\dfrac{1}{4}\times\dfrac{4}{\sqrt{15}}}\\\\tan(\widehat{A})=\dfrac{1}{\sqrt{15}}}\\\\tan(\widehat{A})=\dfrac{1\times\sqrt{15}}{\sqrt{15}\times\sqrt{15}}}\\\\tan(\widehat{A})=\dfrac{\sqrt{15}}{15}