Bonjour j'ai un devoir de math pour la rentrée et je ne le comprend pas pourriez vous m'aider et me l'expliquer svp :

a) Démontrer que pour tout entier n différent de 0 : 1/n-1/n+1=1/n(n+1)

b) A = 1/1x2+1/2x3+1/3x4+....+1/98x99+1/99x100
Quelle est la valeur de A ?

Merci d'avance :)

1

Réponses

  • Utilisateur Brainly
2013-10-20T13:36:58+02:00
a) Démontrer que pour tout entier n différent de 0 :
1/n-1/n+1
=(n+1)/(n(n+1))-n/(n(n+1))
=(n+1-n)/(n(n+1))
=1/n(n+1)

b) A = 1/1x2+1/2x3+1/3x4+....+1/98x99+1/99x100
Quelle est la valeur de A ?

A=1/2+1/6+1/12+...+1/(98x99)+1/(99x100)
  =(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/98-1/99)+(1/99-1/100)
  =1-1/100
  =0,99
pourriez vous m'expliquer votre démarche svp !
???