Réponses

  • Cetb
  • Modérateur confirmé
2013-09-07T11:58:16+02:00
Une equation du second ordre est du type ax^{2}+bx+c=0 avec a, b et c des réel.La résolution s’effectue en deux étapes.Première étape calcul du discriminant D:
D=b^{2}-4ac
Deuxième étape calcul des solutions les solutions sont donnée par les deux formules suivante
x= \frac{-b+ \sqrt{D} }{2a}       
 x= \frac{-b- \sqrt{D} }{2a}   .


Dans ton cas a=6, b=-23 et c=15 
Donc
D=(-23)^{2}-4*6*15
D=169
x= \frac{23+\sqrt{169} }{2*6}=\frac{23+13} {12}= \frac{36}{12}=3
x= \frac{23-\sqrt{169} }{2*6}=\frac{23-13} {12}= \frac{10}{12}= \frac{5}{6}