Soit f une fonction dérivable sur R vérifiant les relations suivantes
f'(x)= f(x) pour tout x appartenant à R
f(0) = 1
on note Cf sa courbe représentative et l'on va essayer de tracer une courbe qui s'en approche. on ne connait pas les valeurs de f(x) donc on ne peut pas tracer les points de la courbe Cf mais on sait qu'en chaque point de la courbe,la pente de la tangente est égale à l'ordonnée du point
on prend un pas de 1
donner les coordonnées du seul point A0 connu de la courbe.préciser le coefficient directeur de Cf en A0
tracer la tangente sur [0:1] on obtient un segment [A0A1] qui approche la courbe Cf sur [0;1]
quelle est l ordonnée de A1?on la prend pour valeur aprochée de f(1)
on réitère le procédé sur l'intervalle [1;2] determiner les coordonnées de A2.Quelle est la valeur approchée de A2
.......
merci

1

Réponses

  • Utilisateur Brainly
2013-09-07T09:39:55+02:00
Il s'agit simplement de la Méthode d'EULER
la fonction f s'appelle la fonction exponentielle de base e
avec e=2,718281828...

il faut utiliser un fichier GEOGEBRA afin de programmer cette fonction EXP
voici le programme :
A=(0,1)
f(x)=e^x
n=12
Séquence[(i / n, (1 + 1 / n)^i), i, 1, n]
Séquence[(-1 i / n, (1 - 1 / n)^i), i, 1, n]
Séquence[Segment[(i / n, (1 + 1 / n)^i), ((i - 1) / n, (1 + 1 / n)^(i - 1))], i, 1, n]
Séquence[Segment[(-1 i / n, (1 - 1 / n)^i), (-1 (i - 1) / n, (1 - 1 / n)^(i - 1))], i, 1, n]

je te joins le graphique du résultat obtenu