Réponses

  • Utilisateur Brainly
2013-06-28T18:31:23+02:00

Ex 2 :

1) a) Factorisation :

A(x)=(x-3)(x+2)+x²-9

       =(x-3)(x+2)+(x-3)(x+3)

       =(x-3)(x+2+x+3)

       =(x-3)(2x+5)

 

b) A(x)=0

donc (x-3)(2x+5)=0

donc x-3=0 ou 2x+5=0

donc x=3 ou x=-2,5

 

2) équation :

(2x)/(x+4)=1/(x-1)

donc (2x)(x-1)=x+4

donc 2x²-2x=x+4

donc 2x²-3x-4=0

Δ=41

donc x=(3-√41)/4 ≈ -0,85

         ou x=(3+√41)/4 ≈ 2,35

 

Ex 3 :

P(S)=1/3 et P(F)=0,6=3/5

de plus P(F et S)=1/10

donc P(F ou S)=P(F)+P(S)-P(F et S)

                           =1/3+3/5-1/10

                           =5/6

la probabilité que ce soit une Fille ou une élève de Seconde est de 5/6

Meilleure réponse !
2013-06-28T19:07:00+02:00

Cette réponse est certifiée

×
Les réponses certifiées contiennent des informations fiables et sérieuses attestées par une équipe d'experts triés sur le volet. Brainly propose des millions de réponses de haute qualité, toutes soigneusement modérées par les membres les plus fiables de notre communauté, mais les réponses certifiées frôlent l'excellence.

Exercice 2 :

------------------

 

1. a. A(x) = (x - 3) (x + 2) + x² - 9
              = (x - 3) (x + 2) + (x - 3) (x + 3)
              = (x - 3) (x + 2 + x + 3)
              = (x - 3) (2x + 5)

 

 

     b. Un produit de facteur est nul si l'un des facteurs est nul, donc deux solutions :

            - soit :    x - 3 = 0    ⇔    x = 3 ;

            - soit :    2x + 5 = 0    ⇔    x = -5/2

 


2.           2x / (x + 4) = 1 / (x - 1)
       ⇒      2x (x - 1) = (x + 4)
       ⇒        2x² - 2x = x + 4
       ⇒   2x² - 3x - 4 = 0

 

          Or, comme  Δ = b² - 4ac = 9 + 32 = 41 l'équation admet donc deux solutions :

 

            - soit :    (-b - √Δ)/2a  =  (3 - √41) / 4  ≈  -0,851

          

            - soit :    (-b +√Δ)/2a  =  (3 + √41) / 4  ≈  2,351

 

 

 

Exercice 3 :

-----------------

 

Donc nous avons :

 - 1 chance sur 3 d'avoir un élève de seconde ;

 - 3 chances sur 5 d'avoir une fille

 - 1 chance sur 10 d'avoir une fille de seconde.

 

Or il s'agit de savoir quelle est la probabilité d'avoir une fille ou un élève de seconde. Il faut donc additionner les chances d'avoir un élève de seconde à celles d'avoir une fille, en enlevant la partie commune, c'est-à-dire les filles de seconde, qui serait sinon comptées deux fois (une fois en tant que filles et une fois en tant qu'élèves de seconde) soit :

 

          p(fille ou seconde) = p(fille) + p(seconde) - p(fille et seconde)

                                  

                                     =  3/5    +       1/3       -     1/10

 

                                     = 18/30  +    10/30      -     3/30

    

                                     =          28/30             -     3/30

 

                                     =                             5/6