Réponses

2013-05-26T21:20:59+02:00

1. 2x²-8=0

     2x²=8

     2x²/2=8/2

     x²=4

     x=racine carré de -4 ou racinecarré de 4

 

2) 3x²+12=0

     3x²=-12

     3x²/3=12/3

     x²=4

     x= racine carré de -4 ou racine carré de 4

  

 

2013-05-26T21:42:23+02:00

1) 2x² - 8 = 0

Δ = b² - 4ac

Δ = 0² - 4 x 2 x (-8)

Δ = 64 > 0 donc il existe deux solutions

x1 = (-b - √Δ) / 2a = (0 - √64) / 4 = -8 / 4 = -2

x2 = (-b + √Δ) / 2a = (0 + √64) / 4 = 8 / 4 = 2

S = {-2 ; 2}

 

2) 3x² + 12 = 0

Δ = b² - 4ac

Δ = 0² - 4 x 3 x 12

Δ = -144 < 0 donc aucune solution

 

3) (x - 1)² - 9 = 0    <= présence d'une identité remarquable

x² - 2*x*1 + 1² - 9 = 0

x² - 2x + 1 - 9 = 0

x² - 2x - 8 = 0

Δ = b² - 4ac

Δ = (-2)² - 4 x 1 x (-8)

Δ = 4 + 32

Δ = 36 > 0 donc 2 solutions

x1 = (-b - √Δ) / 2a = (2 - √36) / 2 x 1 = (2 - 6) / 2 = -4 / 2 = -2

x2 = (-b + √Δ) / 2a = (2 + √36) / 2 x 1 = (2 + 6) / 2 = 8 / 2 = 4

S = {-2 ; 4}

 

4) (1 - 3x)² = 4    <= présence d'une identité remarquable

1² - 2 x 1 x 3x + (3x)² = 4

1 - 6x + 9x² = 4

9x² - 6x + 1 - 4 = 0

9x² - 6x - 3 = 0

Δ = b² - 4ac

Δ = (-6)² - 4 x 9 x (-3)

Δ = 36 + 108

Δ = 144 > 0 donc il existe deux solutions :

x1 = (-b - √Δ) / 2a = (6 - √144) / 2 x 9 = (6 - 12) / 18 = -6/18 = -1/3

x2 = (-b + √Δ) / 2a = (6 + √144) / 2 x 9 = (6 + 12) / 18 = 18/18 = 1

S = {-1/3 ; 1)