URGENT j'ai absolument besoin d'aide pour cet exo en entier..! (dessin en pièce jointe, désolé pour la qualité)

Dans le repère orthonormé (O;vecteur i, vecteur j), les courbes C1 et C2 ont pour équation respectives y=x² et y= racine (x)

Les tangeantes T1 et T2 en leur point commun A coupent l'axe des abscisses respectivement en M et N.

1)a) Trouvez une équation de T1 et T2.

b) Déduisez-en les coordonnées de M et N.

2) Trouvez, arrondie à un degré près, une mesure (Alpha) de l'angle (MAN).

2

Réponses

Meilleure réponse !
2013-05-05T18:13:54+02:00

Bonjour,

 

1a)

 

Coordonnées du point A

x  >= 0

x²=Vx

x^4 = x

x^4/x=1

x^3 = 1

x = 1  et y = x² = 1² = 1

A = {1 ; 1}

 

Equation de T1

f(x) = x²   --> x=1             y= 1

f'(x) = 2x  --> x=1             y'= 2

y = 2(x-1)+1 = 

y = 2x-2+1

y = 2x-1

 

Equation de T2

f(x) = Vx   --> x=1             y= 1

f'(x) = 1/2Vx  --> x=1             y'=1/ 2V1 = 1/2

y = (1/2)(x-1)+1 = 

y = x/2-1/2+1

y = x/2+1/2

 

1b)

L'ordonnées de M et N est y = 0

 

Pour M    T1 passe par  0 

2x-1 = 0

2x = 1

x = 1/2

M = {1/2 ; 0}

 

Pour N    T2 passe par  0 

x/2+1/2 = 0

x/2= -1/2

x = (-1/2)*2

x = -1

N = {-1 ; 0}

 

2)

 

On appelle B la projection de A sur l'axe des abscisses.

Triangle MAB :

AB = 1

MB = 1/2

tan MAB = MB/AB = (1/2)/1 = 1/2

Angle MAB = Arctan 1/2 = 26,56°

 

Triangle NAB :

AB = 1

NB = 2

tan NAB = NB/AB = (2)/1 = 2

Angle NAB = Arctan 2 = 63,43°

 

Angle MAN = Angle NAB - Angle MAB

Angle MAN = 63,43-26,56 = 

Angle MAN = 36,87°

Angle MAN = 37° arrondi au ° près.

 

J'espère que tu as compris

a+

 

 

2013-05-05T18:30:30+02:00

1) a)

Cherchons l'abscisse du point A à laquelle C1 et C2 se coupent :

x² = racine(x) <=> x^4 = x <=> x(x^3 - 1) = 0 donc soit x = 0 soit x^3 - 1 = 0 <=> x^3 =1

<=> x = 1 

Donc le point A à pour abscisse x=1

Equation de la tangente à f à l'abscisse x=a :  (T) : y = f '(a)(x-a) + f(a) donc :

 

(C1) => f(x) = x²  et f(1) = 1  donc f '(x) = 2x  et f '(1) = 2 d'où  

(T1) : y = 2(x-1) +1 = 2x-2+1 = 2x-1

(T1) : y= 2x-1

 

(C2) => f(x) = racine(x)  et f(1) = 1  donc f '(x) = 1/(2racine(x))  et f '(1) = 1/2 d'où  

(T2) : y = (1/2)(x-1) +1 = x/2 - 1/2 +1 = x/2 + 1/2

(T2) : y = x/2 + 1/2

 

b) intersection avec l'axe des abscisses donc ym=yn=0

M vérifie : ym= 2xm -1 <=> 2xm -1 = 0 <=> xm = 1/2   donc M=(1/2 ; 0)

N vérifie : yn= xn/2 + 1/2 <=> xn/2 + 1/2 = 0 <=> xn = -1  donc N=(-1 ; 0)