Le montant, en euros, de la recette réalisée par la vente de x objets est donné par l'expression : R(x)= 120x-x²

Le coût de fabrication, en euros, de ces x objets est donnée par l'expression : C(x) = -0.5x² + 70x+450

1/ Exprimer le bénéfice B(x) obtenu pour la vente de x objets défini par : B(x)= R(x) - C(x) 2/ Résoudre l'inéquation : -0.5x² + 50x - 450 ≥ 0

3/ Interpréter, par une phrase, le résultat obtenu précédemment.

1

Réponses

  • Utilisateur Brainly
2013-04-24T19:18:19+02:00

R(x)= 120x-x²

C(x) = -0.5x² + 70x+450

 

1/ Exprimer le bénéfice B(x) obtenu pour la vente de x objets défini par :

B(x)= R(x) - C(x)

       =(120x-x²)-(-0.5x² + 70x+450)

       =120x-x²+0,5x²-70x-450

       =-0,5x²+50x-450

 

2/Résoudre l'inéquation :

-0.5x² + 50x - 450 ≥ 0

donc x²-100x+900 ≤ 0

donc (x-50)²-1600 ≤ 0

donc (x-50-40)(x-50+40) ≤ 0

donc (x-90)(x-10) ≤ 0

donc 10 ≤ x ≤ 90

 

3/ Interpréter, par une phrase, le résultat obtenu précédemment.

cela signifie que le bénéfice est positif (donc réel !) si la vente se situe entre 10 et 90 objets