Bonjour, J'ai un devoir maison a rendre pour la rentrée j'ai trouvé la solutions mais je n'arrive pas a deduire la formule . C'est presentée sous forme d'une narration de recherche .Je vous donne l'énoncé : Ayant trouvé 21 m de grillage dans mon garage j'ai decidé de les utiliser pour construire un enclos rectangulaire pour mes poules . Afin d'obtenir un enclos plus grand , j'ai pensé utiliser le mur du jardin qui formerait un coté , le grillage formant les trois autres cotés . Après avoir placé un premier piquet en A , je m'interroge sur l'emplacement du second piquet ( appelé B sur mon croquis ) A combien de mètres du point A dois-je placer mon point B pour que l'aire de mon enclos soit la plus grande possible ? J'ai trouvé : on sait que l (largeur) doit etre compris entre 0 et 21 mais on ne peut pas prendre ces deux valeurs car le rectangle n'existerait pas . on ne pas non plus prendre une valeur superieur a 10 car il n'y aurait pas assez de grillage . Donc 0 < l < 10. Ensuite j'ai fait un tableu et j'ai calculé toutes les valeurs comprises entre 0 et 10 . La reponse a la questions est 5 . Mais je n'ai pas trouvé de formule , pouvez vous m'aidez ? merci d'avance ;D

2

Réponses

2012-12-30T19:30:38+01:00

si le grillage est adossé au mur, tu as un rectangle formé de deux largeurs l et d'une longueur L

tu sais que 2l + L = 21 donc L = 21 - 2l

L'aire de l'enclos = L.l = (21 - 2l).l = -2l² + 21l c'est un trinome du 2d degré qui admet un maximum pour l = -21/-4 = 21/4 = 5,25. tu peux contrôler avec ta fonction table.

2012-12-30T20:37:58+01:00

2l + L = 21 , ce qui veut dire L = 21 - 2l

aire de l'enclos = L.l = (21 - 2l).l = -2l² + 21l c'est 1 trinome du 2d degré qui admet un maximum pour l = -21/-4 = 21/4 = 5,25. contrôler avec la fonction table.