On se place dans un repère orthonormal (O, I, J), l'unité de longueur est le centimètre .
Faire une figure soignée et la compléter au fur et à mesure des questions.

1. Placer les points suivants:A(0 ; 8), B(- 6 ; 0), C(- 8 ; 4).
2.a) Calculer les distances AB, BC et AC
b)En déduire la nature du triangle ABC

3.On appelle( C) le cercle circonscrit au triancle ABC.
a) Préciser la position de son centre K et calculer son rayon.
b) Le cercle (C) passe-t-il par le point O ,origine du repère? Justifier.
4) Soit D le poinnt de coordonnées(2; 4).Démontrer que ADBC est un rectangle.

2

Réponses

2014-09-29T17:10:25+02:00
Meilleure réponse !
2014-09-29T18:37:23+02:00
2a) AB²=(-6-0)²+(0-8)²=6²+8²=36+64=100
donc AB=10
BC²=(-8-(-6))²+(4-0)²=2²+4²=20
donc BC=√20=2√5
AC²=(-8-0)²+(4-8)²=8²+4²=80
donc AC=√80=4√5

b) On remarque que AB²=BC²+AC²
D'après la réciproque de Pythagore, ABC est rectangle en C

3a) Dans un triangle rectangle, le centre du cercle circonscrit est le milieu de l'hypoténuse donc K est le milieu de AB
Les coordonnées de K sont :
En abscisse = (0-6)/2=-3
En ordonnée = (8+0)/2=4
Donc K(-3;4)
Le rayon est AB/2=5
3b) On calcule la distance OK = √((-3-0)²+(4-0)²)=√(3²+4²)=√25=5=rayon du cercle
Donc O est sur le cercle.

4) On cherche le milieu de DC :
En abscisse = (-8+2)/2=-3
En ordonnée = (4+4)/2=4
Donc le milieu de DC est K(-3;4). Donc les diagonales de ADBC se coupent en leur milieu donc c'est un parallélogramme. Comme il y a un angle droit en C, c'est un rectangle.
Le bouton merci n'est pas assez ! Merci beaucoup pour vos aides. Bonne Soirée !