Réponses

2013-12-09T17:39:30+01:00
La formule pour calculer l'aire d'un disque est donnée par la formule : π * R² où R = rayon. (j'utilise * pour exprimer la multiplication si tu peux confondre avec la lettre x)

notons R le rayon du premier demi-disque dont le diamètre est AM, on va calculer son aire. Son rayon est la moitié de son diamètre, donc
R = 2x/2 = x
Donc son aire =  (x² * π) / 2 car il s'agit d'un demi-cercle.

Ensuite le deuxième demi-disque. Son diamètre = AB - AM = 8 - 2x. Et son rayon R' est donc (8 - 2x) / 2 = 4 - x
Son aire = (π * R'²) / 2 = (4 - x)² / 2 = (16 - 8x + x²) / 2

f(x) est l'aire de la partie colorée en orange donc la somme de ces 2 demi-disques. On a leur aire il faut juste additionner.

 \frac{x^{2} \pi }{2}   + \frac{(16 - 8x + x^{2} ) \pi  }{2} =   \frac{(2 x^{2} + 16 - 8x) \pi }{2} =  \pi ( x^{2} - 4x + 8)

Donc a bien f(x) = π(x² - 4x + 8)