Réponses

2013-11-13T01:40:47+01:00
Bonjour,

1) a) C(n) = 0,06n² - 0,3n + 180.
C(15) = 0,06 * 15² - 0,3 * 15 + 180 = 202,50 €.
C(35) = 0,06 * 35² - 0,3 * 35 + 180 = 274,50 €

b) Prix total de vente pour 15 articles : 15 * 12 = 180 €.
Prix total de vente pour 35 articles : 35 * 12 = 420 €.

c) P(n) = 12n

2) a) Graphique en pièce jointe.

b) Pour 15 articles, le prix total de vente (180 €) est inférieur au coût de fabrication (202,50 €). 
Monsieur Martin ne fait pas de bénéfice.
Pour 35 articles, le prix total de vente (420 €) est supérieur au coût de fabrication (274,50 €). 
Monsieur Martin  fait un bénéfice.

c) Tableau de variations : 

 x\ \ \ \ \ |\ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 35|\\f(x)\ |180\ \ \ \ \nearrow\ \ \ 274,50|

d) \begin{array}{|c|c|c|c|c|c|c||} x&0&5&10&15&20&35 \\ f(x)&180&184,50&192&202,50&216&274,50 \\\end{array}
e) Résoudre f(x) = g(x) revient à résoudre : 0,06x² + 0,6x + 180 = 12x,
soit 0,06x² + 0,6x -12x + 180 = 0
soit 0,06x² - 11,4x + 180 = 0.

f) Le discriminant est égal à : 11,4² - 4 * 0,06 * 180 = 86,76.
Les solutions de cette équation sont 
x_1 = \dfrac{11,4 - \sqrt{86,76}}{2\times0,06}\approx 17,4\ \ et\ \ x_2 = \dfrac{11,4 + \sqrt{86,76}}{2\times0,06}\approx 172,6
La valeur 172,6 est à rejeter car x appartient à l'intervalle [0;35]
La solution de f(x)=g(x) dans [0;35] est 17,4 (à moins de 0,1 près)

3) Il faut vendre un minimum de 18 "cache-pots" pour que la fabrication soit rentable.
Sorry, mais j'ai eu un problème lors de l'édition du texte... Le tableau contient des "amps;" que je ne peux plus effacer... Ne pas en tenir compte.
Problème réglé :)
Merci pour l'aide !