Bonjour, je vous présente mon problème :

Soit h la fonction définie sur R par : h(x) = 2x² - 2 (√3 - √5 )x - 2√15
1. Montrer que le discriminant ∆ peut s’écrire sous la forme 4(√3 + √5 )².
2. En déduire la forme canonique et la forme factorisée de la fonction h.

Merci d'avance.

1

Réponses

  • Utilisateur Brainly
2013-10-03T20:57:39+02:00
Soit h la fonction définie sur R par : h(x) = 2x² - 2 (√3 - √5 )x - 2√15

1. Montrer que le discriminant ∆ peut s’écrire sous la forme 4(√3 + √5 )².
∆=(-2((√3 - √5 ))²-4x2x(- 2√15)
  =4(
√3 - √5)²+16√15
  =4(3+5-2
√15)+16√15
  =4(
3+5+2√15)
  =
4(√3 +√5)²>0

2. En déduire la forme canonique et la forme factorisée de la fonction h.

h(x) = 2x² - 2 (√3 - √5 )x - 2√15
      =2(x-√3 +√5)²-√3 - √5

h(x)=2(x-√3)(x-√5)















merci beaucoup
Mais pouvez vous m'envoyez le détail du 2) ?