SVP J'AI ENORMEMENT BESOIN D'AIDE POUR CET EXERCICE C'EST TREEES URGENT, JE VOUS EN SUPPLIE !!!!!
Exercice 2 :
Le nombre  \sqrt{2} n'est pas un nombre rationnel.
Pour démontrer que  \sqrt{2} n'est pas un nombre rationnel, on utilise un raisonnement par l'absurde, c'est-à-dire que l'on commence par supposer que  \sqrt{2} est un nombre rationnel, puis on démontre que cette supposition conduit à une contradiction, donc que cette supposition est fausse.

A) RESULTATS PRELIMINAIRES
1)a) Quels sont les différents restes possibles dans la division euclidienne d'un nombre entier "n" par 2 ?
b) en déduire que quel que sois le nombre entier "n" , on a :
n=2q ou n=2q+1 , q étant un nombre entier.
c) comment appelle-t-on les nombres de la forme 2q ?
Comment appelle-t-on les nombres de la forme 2q + 1 ?
2) démontrer que le carré d'un nombre pair est un nombre pair et que le carré d'un nombre impair est un nombre impair.

B) DEMONSTRATION
1) supposons que  \sqrt{2} est un nombre rationnel, c'est-à-dire qu'il existe une fraction irréductible  \frac{p}{q} tel que :  \sqrt{2} =  \frac{p}{q} .
a) justifier l'égalité p² = 2q²
b) en déduire que p² est un nombre pair.
c) utiliser la partie A pour montrer que p est lui-même un nombre pair. On pose alors : p = 2n, n étant un nombre entier.
d) expliquer pourquoi le nombre q est pair également. On appellera "m" le nombre entier tel que : q = 2m.
2) que peut-on dire alors de la fraction  \frac{p}{q} ? Expliquer pourquoi cette conclusion est en contradicition avec l'hypothèse concernant la fraction  \frac{q}{p} .
3) conclure.

C'est vraiment urgent...

1

Réponses

2013-09-24T19:49:40+02:00
A)
2) 2q²=4q donc pour tous q pair nombre pair
3q²=9q donc pour tous q impair on a un nombre impair

B)
a)
2=p²/q²
2*q²=p²
b)
p²=2q²
cf question A) 2) 2q²=4q donc pour tous q pair nombre pair
c) Tous multiplication par 2 nombres pairs donne un nombre pair
J'espere t'avoir avancé un peu dans la recherche