Réponses

Meilleure réponse !
2013-07-22T20:43:21+02:00

Cette réponse est certifiée

×
Les réponses certifiées contiennent des informations fiables et sérieuses attestées par une équipe d'experts triés sur le volet. Brainly propose des millions de réponses de haute qualité, toutes soigneusement modérées par les membres les plus fiables de notre communauté, mais les réponses certifiées frôlent l'excellence.

Voici pour l'exercice 1 :

-------------------------------

 

1)   f '(x)  =  4x³ - 98 × 2x
               =  4x³ - 196x                     valable sur tout   x  ∈  IR.
               =  4x(x² - 49)
               =  4x(x - 7)(x + 7)

 


2)

 

a)    f '(x)  =  0     si       4x(x - 7)(x + 7)  =  0    soit si :
        —   4x  =  0       d'où      x  =  0
        —   x - 7  =  0    d'où     x  =  7
        —   x + 7  =  0   d'où     x  =  -7

 

 

b)    |  x        | -∞     -7       0       7       +∞  |
       |  4x      |     -      |   -   0   +   |    +         |
       |  x - 7   |    -       |   -   |    -   0    +         |
       |  x + 7  |    -      0  +   |   +   |     +         |
       |  f'(x)    |    -      0  +   0  -    |     +         |

 


3) On a donc :


      |   x     | -∞       -7      0            7   +∞ |
      |  f'(x)  |  decr.  |  cr.  |  décr.  |  cr.    |

 


4)

a)   X² - 98X + 192  =  0

      Cette équation a pour dicriminant    98² - 4(1)(192)  =  9604 - 768  =  8836  =  94²
      qui est positif, donc on a deux racines :
      — (98 - 94)/2(1)  =  4/2  =  2
      — (98 + 94)/2(1)  =  192/2  =  96

 

      Donc    X² - 98X + 192  =  0    pour    x  ∈  {2 ; 96}

 

 

b)    Ce qui fait que    f(x)  =  x⁴ - 98x² + 192  =  0     pour   x²  ∈  {2 ; 96}

 

        soit pour    x  ∈  {-4√6 ; -√2 ; √2 ; 4√6}


        soit environ pour    x  ∈  {-9,80 ; -1,41 ; 1,41 ; 9,80}

 


5)   On déduit, du tableau de variations et des racines, le tableau de signes suivant :

 

          |  x       |  -∞   -4√6     -√2      √2     4√6    +∞ |
          |  f'(x)  |      +     0    -    0   +    0   -    0     +     |