ABC est un triangle, AB=2.7 cm AC=4,5 cm et BC=3,6 cm

1) Prouver que ABC est un triangle rectangle en B .

2) en déduire la mesure au degrés près de l'angle A donc ^BAC^

3) On note H le pied de la hauteur issue de B

en utilisant ^BAH^ environt 53 degrès calculer AH au mn

Voilà mon devoir pour demain svp aidé-moi!!! :)

2

Réponses

  • Utilisateur Brainly
2013-06-09T16:14:21+02:00

ABC est un triangle, AB=2.7 cm AC=4,5 cm et BC=3,6 cm 

 

 

1) Prouver que ABC est un triangle rectangle en B .

AB²+BC²=2,7²+3,6²20,25

AC²=4,5²=20,25

donc AB²+BC²=AC²

d'apres le th de Pythagore BAC est rectangle en B

 

 

2) en déduire la mesure au degrés près de l'angle A

cos(A)=AB/AC

cos(A)=2,7/4,5=0,6

donc A=53,13°

 

 

3) On note H le pied de la hauteur issue de B calculer AH au mn

cos(A)=AH/AB

donc AH=2,7*cos(53°

donc AH=1,625 cm

 

Meilleure réponse !
2013-06-09T17:22:42+02:00

1) AC²=4,5²=20,25

     AB² + BC²= 2,7² + 3,6²= 7,29 + 12,96= 20,25

     Donc AC²=AB²+BC²

D'après la réciproque du théorème de Pythagore, ABC est rectangle en B.

 

 

2) Dans le triangle ABC rectangle en B.

SIN(^BAC^)= \frac{BC}{AC}

SIN(^BAC^)= \frac{3,6}{4,5}

SIN(^BAC^)53°

 

 

3) BAH est un triangle rectangle en H.

COS(^BAH^)= \frac{AH}{AB}

COS 53°= \frac{AH}{2,7}

AH= COS 53° x 2,7

AH 1,62 cm

AH 16 mm